An Algorithm Selection Benchmark of the Container Pre-marshalling Problem
نویسندگان
چکیده
We present an algorithm selection benchmark based on optimal search algorithms for solving the container pre-marshalling problem (CPMP), an NP-hard problem from the field of container terminal optimization. Novel features are introduced and then systematically expanded through the recently proposed approach of latent feature analysis. The CPMP benchmark is interesting, as it involves a homogeneous set of parameterized algorithms that nonetheless result in a diverse range of performances. We present computational results using a state-of-theart portfolio technique, thus providing a baseline for the benchmark.
منابع مشابه
Metaheuristics for the Two-Dimensional Container Pre-Marshalling Problem
We introduce a new problem arising in small and mediumsized container terminals: the Two-Dimensional Pre-Marshalling Problem (2D-PMP). It is an extension of the well-studied Pre-Marshalling Problem (PMP) that is crucial in container storage. The 2D-PMP is particularly challenging due to its complex side constraints that are challenging to express and difficult to consider with standard techniqu...
متن کاملA Q-learning System for Container Marshalling with Group-Based Learning Model at Container Yard Terminals
This paper addresses scheduling problems on the material handling operation at marine container-yard terminals. The layout, removal order and removal distination of containers are simultaneously optimized in order to reduce the waiting time for a vessel. The schedule of container-movements is derived by autonomous learning method based on a new learning model considering container-groups and co...
متن کاملA Multi-Heuristic Approach for Solving the Pre-Marshalling Problem
Minimizing the number of reshuffling operations at maritime container terminals incorporates the Pre-Marshalling Problem (PMP) as an important problem. Based on an analysis of existing solution approaches we develop new heuristics utilizing specific properties of problem instances of the PMP. We show that the heuristic performance is highly dependent on these properties. We introduce a new meth...
متن کاملDeep Learning Assisted Heuristic Tree Search for the Container Pre-marshalling Problem
One of the key challenges for operations researchers solving real-world problems is designing and implementing high-quality heuristics to guide their search procedures. In the past, machine learning techniques have failed to play a major role in operations research approaches, especially in terms of guiding branching and pruning decisions. We integrate deep neural networks into a heuristic tree...
متن کاملOptimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals
The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...
متن کامل